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Abstract
Recent literature found that subjective survival expectations in the Health and Retirement Study
(HRS) appear to be overly optimistic among older respondents compared to life table values and
actual survival rates. This paper argues that a significant portion of this bias is due to measurement
error as opposed to biases in survival beliefs. HRS asks about the subjective probability of living
~12 more years. The life table 12-year survival probabilities are decreasing with age and they are
close to zero among the oldest respondents. As the used probability scale in the HRS (0-100%) is
bounded, measurement error is likely to be biased away from the boundaries. The paper shows
that the extent of this bias is likely to be large. I use a simple measurement error correction
model, which assumes that measurement error is mean-zero in the logit of the probabilities. The
logit transformation leads to an unbounded scale between minus and plus infinity, and the mean-
zero measurement error assumption is more reasonable in this metric. The estimated corrected
survival beliefs are much closer to actual survival probabilities than the raw survival reports. I
discuss the limitations of the simple measurement error model used in the paper, and I discuss a
more promising alternative which will be estimated in the future using to-be-collected data in an
experimental module of the 2014 wave of HRS.
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1 Introduction

Mortality risk is a key factor for many life decisions, such as deciding when to retire, how much to save,

whether to purchase health or life insurance, etc. Mortality risk, however, is not directly observable.

One approach might be to use life-table survival probabilities. Life-tables, however, only provide

variation in mortality risks by age and gender, and these age and gender groups likely differ in many

other aspects beyond their survival chances. Another approach might be to use indicators of actual

survival in a later wave of a panel survey. Actual survival, however, mixes up genuine mortality risks

and luck. In economic models we would want to use only the risk part and not the luck part. These

problems motivated data collection on subjective survival expectations, which provides measures of

mortality risk on the individual level.

The HRS pioneered in the collection of subjective expectations. The survival question that I use in

this paper comes from the 2000 wave of HRS and it reads as follows: “What is the percent chance that

you will live to be [target age] or more?” The target age exceeds the individual’s age by 10-15 years:

it is 75 years for people younger than 65, and 80, 85, 90, 95, and 100 for individuals in successive

five-year age intervals.1

Recent literature has shown that the HRS subjective survival probabilities work well in the sense that

average values of expectations are close to life tables probabilities, subjective expectations correlate

with risk factors in reasonable ways, and they predict economic behavior (Smith et al., 2001; Hurd

and McGarry, 2002; Hurd et al., 2004; Hurd et al., 2005; Gan et al., 2005; Perozek, 2008; Sloan et al.,

2013; Hudomiet and Willis, 2013). It has been documented in the literature, however, that older

respondents report overly optimistic answers to subjective survival probability questions in the HRS

(Hurd et al., 2005; Elder, 2013; Hudomiet and Willis, 2013). This is sometimes called the flatness

bias, because the subjective survival hazards are too flat, they do not decrease fast enough with age.

It is not known why this is the case. There are several non-mutually exclusive interpretations of this

evidence. First, it may be that life table probabilities are biased downward because they fail to capture

improvements in survival across birth cohorts. Perozek (2008), for example, argues that revisions in
1HRS actually asks two questions. The first uses the target age 75 and it is asked from everyone who is younger than

65 year old. The second question uses target ages 80-100 depending on the age of the responders. In this paper I use
both question but only the 60-90 age sample, so that everyone answers a question about 10-15 year survival.
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life table frequencies in the 1990s can be predicted by survival expectations in the HRS. Second, the

beliefs of the elderly may be too optimistic.

In this paper I argue for a third explanation of the flatness bias that there is mean-reverting measure-

ment error in the HRS survival expectations. HRS asks about the subjective probability of living 10-15

more years. The life table 10-15-year survival probabilities are decreasing with age quite substantially

above age 60, and they are close to zero among the oldest respondents. As the used probability scale in

the HRS is bounded to be between 0% and 100%, measurement error is likely to be biased away from

these boundaries. For example, imagine that individuals know their actual survival chances precisely,

but they report it with some error in the HRS. If individual A’s true survival chance is 50%, it seems a

fair assumption that his expected report will be around 50%. If individual B’s true survival chance is

2%, however, it seems unlikely that his expected report will about around 2%. As the probability scale

is bounded at 0%, measurement error is more likely to be positive on average. Older respondents in

the HRS might report overly optimistic survival beliefs because of such mean reverting measurement

error. Their true survival expectations are close to the 0% bound, and thus, the average measurement

error might push their average responses above their true expectations.

There might be other reasons whey measurement error has a mean reverting property. It is possible

that 50%, the middle of the probability scale, serves as anchor in the sense that people who are

uncertain about the true probability respond with a weighted average of 50% and their “guess” about

the true probability. Such anchoring bias might also follow from the fact that people do not want

to spend too much time on any individual survey question, and instead, they just give a reasonable

answer, which they feel should be close to the middle of the answer scale.

Whatever the reason is for mean reverting measurement error, it might explain the apparent flatness

bias in reported subjective survival expectations. In order to correct for this bias we need to estimate

a map between underlying beliefs and survey responses. In an experimental module of the 2014 HRS,

we are asking a series of expectation questions that will enable us to do exactly that. Section 5 shall

discuss this approach in more detail.

In this paper I use a simpler approach to approximate the extent of mean-reverting measurement

error. I use a simple statistical model that assumes that measurement error is mean-zero in the logit

of the probabilities as opposed to in the level of the probabilities. This assumption is arguably strong
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and it only serves as a benchmark for approximating the extent of the bias. The logit transformation

has the advantage that it is unbounded, it is defined on the entire minus and plus infinity scale.

It is more reasonable to assume that measurement error is mean-zero on an unbounded scale. The

logit transformation is only one, and quite arbitrary, method to make the scale unbounded, and future

research should test its validity. Nevertheless, I shall show that the estimated corrected survival beliefs,

using the logit transformation, are much closer to actual survival probabilities than the raw survival

reports.

The paper is organized as follows. Section 2 shows the flatness bias in the raw survival expectations.

Section 3 lays out several measurement error models, including the simple one that shall be used in

the estimation. Section 4 shows the estimation results and Section 5 lays out future work.

2 Flatness bias in survival expectations

Table 1 shows survival expectations and actual survival rates in the 2000 HRS sample by age and

gender groups. Actual survival rate is the probability that a person in the 2000 census is still alive

in 2012. The actual mortality of HRS respondents is very precisely measured from administrative

data (the National Health Index), and it is even available for people who dropped out of the survey

in a later wave. Survival expectations are also coming from the same sample in 2000. The subjective

expectations ask about the probabilities of living at least 10-15 more years. This is not exactly the

same as the 12 year interval used for actual survival, but it should be close to that.

Both the actual and the subjective survival expectations fall with age, but the actual survival proba-

bilities fall faster than the subjective reports. The subjective reports, thus, suffer from a flatness bias.

The bias appears to be the strongest in the oldest sample, where the actual survival probabilities are

close to zero. For example, among the 85-90 year old male sample, the actual survival chances are

around 5%, while the subjective ones are around 29%. For females, the corresponding numbers are

11% (actual) and 31% (subjective). In the next sections I shall investigate whether this flatness bias

is due to measurement error or a bias in the beliefs of the elderly.
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Table 1: Survival expectations and actual survival by age and gender
Males Females

Actual survival Survival expectations Actual survival Survival expectations
Age 60-64 0.747 0.648 0.835 0.68

[0.012]** [0.008]** [0.011]** [0.007]**
Age 65-69 0.665 0.564 0.743 0.589

[0.014]** [0.009]** [0.011]** [0.008]**
Age 70-74 0.509 0.537 0.629 0.541

[0.015]** [0.010]** [0.013]** [0.009]**
Age 75-79 0.328 0.423 0.43 0.421

[0.017]** [0.011]** [0.014]** [0.010]**
Age 80-84 0.158 0.377 0.266 0.337

[0.022]** [0.015]** [0.017]** [0.012]**
Age 85-90 0.049 0.285 0.107 0.307

[0.031] [0.021]** [0.024]** [0.017]**
N 4594 4594 6223 6223

R squared 0.622 0.764 0.695 0.77
*The table uses data from the 2000 and and 2012 HRS. Actual survival measures the 12-year survival rate of the sample
members of the 2000 HRS. Survival expectations are survey reports of surviving 10-15 years in the future in the 2000
HRS.

3 Alternative measurement error models

The goal is to get an unbiased estimate of the average survival beliefs of a particular demographic

group, such as age and gender group, using HRS data. I shall use the following notations.

1. pti denotes the true survival probability of individual i, which might differ from his subjective

beliefs.

2. pt denotes the true average survival probability in the group. For example, pt might be a life

table survival probability or the average realized survival chances in the group.

3. pbi denotes the belief of individual i about his survival. This variable is unobserved.

4. pb denotes the average belief in the group.

5. ∆b−t is the average bias in survival beliefs, ∆b = pb − pt.

6. pri denotes the reported survival probability of the individual in the HRS.

7. pr denotes the average reported survival probability in the group in the HRS.

8. ∆r−t is the average bias in survival reports compared to true survival probabilities, ∆r−t = pr−pt.
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9. ∆r−b is the average bias in survival reports compared to beliefs, ∆r−b = pr − pb.

The goal is to estimate the average survival beliefs in the group, pb, and the bias in beliefs, ∆b−t .

I assume the following, non-restrictive structure on these probabilities:

f
(
pti

)
= c+ αi, (1)

f
(
pbi

)
= c+ αi + b+ vi, (2)

f (pri ) = c+ αi + b+ vi +mi, (3)

where f(·) is a potentially non-linear function, αi is an unobserved term in true survival probabilities,

b is the average bias in beliefs, vi is an unobserved term in beliefs, and mi is measurement error in the

HRS reports. I further assume that the unobserved terms are mean-zero and uncorrelated with any

other variables. This is a very general parametrization of the problem.

If the f (·) function were known, we could recover the interesting parameters of the model. Using

actual survival data we can estimate c using the moment condition

c = E
(
f

(
pti

))
. (4)

Using survival expectations data we can also estimate the bias term, b, using the moment condition

b = E (f (pri )) − E
(
f

(
pti

))
. (5)

The problem is, of course, that we do not observe the function f(·). In what follows, I discuss the

estimation using different functional forms for the f(·) function.
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3.1 Identity function

As a baseline, let us consider the case, when the f (·) is the identity function. The moment conditions

in (4) and (5) become:

c = E
(
pti

)
, (6)

b = E (pri ) − E
(
pti

)
. (7)

The bias terms are

∆b−t = b, (8)

∆r−t = b, (9)

∆r−b = 0. (10)

This model implies that survey reports equal true beliefs on average. Consequently, the results in

Table 1 would imply that the elderly hold overly optimistic survival beliefs. The differences between

the average actual and reported survival probabilities would be unbiased estimates of the biases in

beliefs.

3.2 General case

In this section I shall provide formulas for biases in a general, unrestricted case. Given that the

function f(·) is non-linear, there is no closed form formula for the biases in beliefs. We can, however,

use Taylor approximations for the probabilities and the biases. Let g(·) denote the inverse of f (·), so

that g (f (p)) = p. The second order Taylor approximation of the true survival probabilities around

the sample average g (c) is

pti = g (c+ αi) ≈ g (c) + g′ (c)αi + g′′ (c)
2 α2

i . (11)

By taking expectations we get

pt ≈ g (c) + g′′ (c)
2 σ2

α, (12)

6



because E (αi) = 0, by assumption. Similarly we can derive approximate formulas for beliefs and

survey reports:

pbi ≈ g (c) + g′ (c) (b+ αi + vi) + g′′ (c)
2 (b+ αi + vi)2

, (13)

pb ≈ g (c) + g′ (c) b+ g′′ (c)
2

(
b2 + σ2

α + σ2
v

)
, (14)

pri ≈ g (c) + g′ (c) (b+ αi + vi +mi) + g′′ (c)
2 (b+ αi + vi +mi)2

, (15)

pr ≈ g (c) + g′ (c) b+ g′′ (c)
2

(
b2 + σ2

α + σ2
v + σ2

m

)
. (16)

The bias terms are then

∆b−t ≈ g′ (c) b+ g′′ (c)
2

(
b2 + σ2

v

)
, (17)

∆r−t ≈ g′ (c) b+ g′′ (c)
2

(
b2 + σ2

v + σ2
m

)
, (18)

∆r−b ≈ g′′ (c)
2 σ2

m. (19)

Compared to the linear case above, average survey reports differ from average beliefs whenever the

g(·) function is non-linear. The bias in survey reports is increasing in the variance of the measurement

error. As I shall show below, in reasonable cases the bias has a mean-reverting property.

Unfortunately, however, it is not possible to estimate these bias terms using the available HRS data.

For that, we would need to identify the variance of the measurement error σ2
m and the variance in

belief dispersion, σ2
v .

3.3 Logit model

In the estimation below, I am going to use the logit transformation for f (·). That is, f (p) = ln p
1−p .

The inverse of the logit function and its derivatives are

g (x) = exp (x)
1 + exp(x) , (20)
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g′ (x) = exp (x)
(1 + exp(x))2 , (21)

g′′ (x) = exp (x) (1 − exp (x))
(1 + exp(x))3 , (22)

By substituting these equations into the general formulas in the previous section, we get estimators

for average probabilities and the different bias terms. For example, the bias terms are

∆b−t ≈ exp (c)
(1 + exp(c))2 b+ 1

2
exp (c) (1 − exp (c))

(1 + exp(c))3
(
b2 + σ2

v

)
, (23)

∆r−t ≈ exp (c)
(1 + exp(c))2 b+ 1

2
exp (c) (1 − exp (c))

(1 + exp(c))3
(
b2 + σ2

v + σ2
m

)
, (24)

∆r−b ≈ 1
2
exp (c) (1 − exp (c))

(1 + exp(c))3 σ2
m. (25)

Equation (25) shows that measurement error has a mean reverting property. When c > 0, that is,

average survival probabilities are above 50%, the measurement error is negative, because 1−exp(c) < 0.

Similarly, when the average survival probability is below 50%, the measurement error is positive.

As before, however, we still cannot identify the biases without measures of σ2
m and σ2

v .

3.4 Simplified logit model

In this section I consider a simplified model, in which the coefficients are identified. Let us assume

that the probabilities have the following structure:

f
(
pti

)
= c, (26)

f
(
pbi

)
= c+ b, (27)

f (pri ) = c+ b+mi. (28)

The only difference between (1)-(3) and (26)-(28) is that the unobserved heterogeneity terms αi and

vi are shut down. The f(·) function is still assumed to be a logit. Under these conditions the average

probabilities are
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pt = g (c) , (29)

pb = g (c+ b) , (30)

pr ≈ g (c) + g′(c)b+ g′′ (c)
2

(
b2 + σ2

m

)
, (31)

≈ g (c+ b) + g′′ (c+ b)
2 σ2

m. (32)

And the bias terms are

∆b−t = exp (c+ b)
1 + exp(c+ b) − exp (c+ b)

1 + exp(c+ b) , (33)

∆r−t = exp (c)
(1 + exp(c))2 b+ 1

2
exp (c) (1 − exp (c))

(1 + exp(c))3
(
b2 + σ2

m

)
, (34)

∆r−b ≈ 1
2
exp (c+ b) (1 − exp (c+ b))

(1 + exp(c+ b))3 σ2
m. (35)

In this model one can estimate all parameters. The variance of mi can be estimated from the residual

variance in (28).

4 Estimation

In this section I am estimating the simplified logit model in Section 3.4 for age and gender groups.

The results are in Table 2 (males) and Table 3 (females). The first two columns of the tables are

just repeating the actual survival rate and raw expectations from Table 1. Columns 3 and 4 correct

for measurement error in the following way. First, I fit the model (28). After fitting the model, I

compute average beliefs as the average of pbi = g (ci + bi) in the sample. The coefficients ci and bi

are indexed by i because I allow them to vary by demographic groups. As discussed in the previous

section, I do not allow unobserved heterogeneity in these variables, so the model in column 4, which

allows for more heterogeneity, should be less biased. In column 3 I only include age dummies, and

column 4 augments the model with a large number of predictors of survival (education, race, ethnicity,

subjective health, smoking and drinking behavior, parents’ mortality). The models are estimated by

maximum likelihood, and the average survival beliefs are recovered using the delta method averaged

within age and gender groups.
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Table 2: Imputed survival beliefs and actual survival by age, males
Actual Raw expectations Imputed beliefs
[1] [2] [3] [4]

Age 60-64 0.747 0.648 0.735 0.713
[0.012]** [0.008]** [0.013]** [0.011]**

Age 65-69 0.665 0.564 0.612 0.603
[0.014]** [0.009]** [0.017]** [0.014]**

Age 70-74 0.509 0.537 0.571 0.566
[0.015]** [0.010]** [0.020]** [0.017]**

Age 75-79 0.328 0.423 0.358 0.374
[0.017]** [0.011]** [0.020]** [0.018]**

Age 80-84 0.158 0.377 0.297 0.319
[0.022]** [0.015]** [0.024]** [0.022]**

Age 85-90 0.049 0.285 0.15 0.171
[0.031] [0.021]** [0.021]** [0.021]**

N 4594 4594 4594 4594
*The table uses data from the 2000 and and 2012 HRS. Actual survival measures the 12-year survival rate of the sample
members of the 2000 HRS. Raw expectations are survey reports of surviving 10-15 years in the future in the 2000 HRS.
Imputed beliefs correct the survey reports for measurement error using the model in 3.4. Model 3 uses no covariates
other than age group dummies. Model 4 includes other covariates as well: age in years, race (black or other), ethnicity
(Hispanic), years of education, subjective health (excellent-very good; good; fair-poor), smoking dummies (smokes now,
smoked ever), drinking status (ever drinks, amount of drinking per week on average), whether parents are alive (mom
and dad separately).

Table 3: Imputed survival beliefs and actual survival by age, females
Actual Raw expectations Imputed beliefs
[1] [2] [3] [4]

Age 60-64 0.835 0.68 0.776 0.753
[0.011]** [0.007]** [0.010]** [0.009]**

Age 65-69 0.743 0.589 0.648 0.636
[0.011]** [0.008]** [0.014]** [0.012]**

Age 70-74 0.629 0.541 0.575 0.571
[0.013]** [0.009]** [0.018]** [0.015]**

Age 75-79 0.43 0.421 0.357 0.373
[0.014]** [0.010]** [0.018]** [0.016]**

Age 80-84 0.266 0.337 0.216 0.237
[0.017]** [0.012]** [0.015]** [0.015]**

Age 85-90 0.107 0.307 0.173 0.193
[0.024]** [0.017]** [0.019]** [0.018]**

N 6223 6223 6223 6223
*The table uses data from the 2000 and and 2012 HRS. Actual survival measures the 12-year survival rate of the sample
members of the 2000 HRS. Raw expectations are survey reports of surviving 10-15 years in the future in the 2000 HRS.
Imputed beliefs correct the survey reports for measurement error using the model in 3.4. Model 3 uses no covariates
other than age group dummies. Model 4 includes other covariates as well: age in years, race (black or other), ethnicity
(Hispanic), years of education, subjective health (excellent-very good; good; fair-poor), smoking dummies (smokes now,
smoked ever), drinking status (ever drinks, amount of drinking per week on average), whether parents are alive (mom
and dad separately).
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As we can see, imputed beliefs fall with age much faster than survey reports. That is, after correcting

for measurement error, beliefs appear to be less flat. The richer model in column 4 and the less rich

model in column 3 are similar. In the oldest sample, however, beliefs are still upward biased.

5 Future work using the HRS experimental modules

The results in the previous section are suggestive that mean reverting measurement in the survival

probabilities goes a long way in explaining the flatness bias. The used model, however, is based on

many untestable assumptions. It would be valuable to collect and make use of data that enables us to

estimate more general models.

Questions in an HRS experimental module in 2014 shall enable us to estimate better models of survey

response. The format of the questions in the module is “What is the percent chance that you will

live at least X more years?” The fills “X” are age and gender dependent, and they are chosen in each

group so that they correspond to similar life table probabilities on average. Each person is asked three

questions: one in which the life table probability is around 60 percent, one where it is around 30

percent and one where it is around 15 percent. Having three questions can help identify the response

model more precisely. For example, mean-reverting measurement error should have a stronger effect

on the third question, where the average answer is around 15 percent compared to the first question.

By jointly using the three questions one can derive the extent of mean-reversion in measurement error.

The second advantage of having three questions is that the variance of measurement error and belief

dispersion can be identified as well. One reasonable assumption one might use is that measurement

error is the part of the unobserved heterogeneity in answers that is uncorrelated across questions, and

the dispersion is belief is the part that is shared across questions.
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